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Abstract 

In meta-analysis, it is common to have dependent effect sizes, such as several effect sizes 

from the same sample but measured at different times. Cheung and Chan (2004) proposed the 

adjusted-individual and adjusted-weighted procedures to estimate the degree of dependence 

and incorporate this estimate in the meta-analysis. The present study extends the previous 

study by examining the case of heterogeneous degree of dependence. Simulation results 

reveal that these two procedures again generated less biased estimates of the degree of 

heterogeneity than the commonly used samplewise procedure, and were statistically more 

powerful to detect true variations. In addition, the adjusted-weighted procedure generated 

slightly less biased estimates of the degree of heterogeneity than the adjusted-individual 

weighted procedure across conditions. Future directions to further refine these procedures are 

discussed. 

 

Keywords: Meta-analysis, dependent effect size 



Dependent Correlations 3 

Dependent Correlations in Meta-Analysis: The Case of Heterogeneous Interdependence 

Most popular statistical procedures in meta-analysis assume that the effect sizes are 

independent. However, it is not uncommon to encounter studies that contribute more than one 

effect size from same samples (e.g., Chapman, Uggerslev, Carrol, Piasentin, & Jones, 2005; 

Williams, McDaniel, & Nguyen, 2006; Zhao & Seibert, 2006). Statistical procedures have 

been proposed to handle this kind of dependent effect sizes (e.g., Gleser & Olkin, 1994; 

Hunter & Schmidt, 1990). Generalized least squares approach (Becker, 1992) and 

hierarchical linear modeling (Bryk & Raudenbush, 2002), when applied to meta-analysis, can 

also take into account the degree of dependence among the effect sizes. However, all these 

approaches require knowledge of the intercorrelations or covariances between the dependent 

effect sizes. In reality, these pieces of information are rarely available in published studies. 

This might be one of the reasons why the aforementioned analytic approaches were seldom 

used. 

If the degree of dependence is unknown, one approach is to impute an estimate 

based on previous research. However, in most situations, it is difficult to decide what the best 

estimate should be. Another approach is to avoid the problem of non-independence by 

averaging the dependent effect sizes. This approach, denoted as the samplewise procedure by 

Cheung and Chan (2004), is a commonly adopted approach in published meta-analytic 

reviews, probably because of its simplicity and easiness to use. To avoid inflating the sample 

size, the original or average sample size is usually used as the weight for the average effect 

size of a particular sample or study. However, Cheung and Chan (2004) illustrated in their 

simulation study that the samplewise procedure tended to underestimate the degree of 

heterogeneity. 

Cheung and Chan (2004) instead proposed to estimate the degree of dependence 

from the limited information and incorporate this estimate in the meta-analysis. Specifically, 
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these authors proposed two procedures, denoted as the adjusted-individual procedure and 

adjusted-weighted procedure, to incorporate the estimated degree of dependence in the 

meta-analysis. In their simulation study, they found that these two procedures were less 

biased than the samplewise procedure in estimating the degree of heterogeneity in 

meta-analysis. However, there were limitations in their study. For example, they only 

examined cases in which the degree of heterogeneity was homogeneous across samples - an 

unrealistic situation in meta-analysis. In the present study, we extend their study by 

examining a more realistic situation in actual meta-analysis, i.e., the case of heterogeneous 

degree of dependence across studies. 

The Samplewise Procedure 

In the present study, we focus our discussion on correlation (Pearson r), a popular 

estimate of effect sizes in meta-analysis of applied research. Suppose there are K studies in a 

meta-analysis, each contributes pi correlations. We denote the j-th sample correlation 

contributed by the i-th study by ijr , which is an estimate of the population correlation, i . 

We assume that the K studies are heterogeneous, and the population correlations follow an 

arbitrary distribution with a mean of •  and a standard deviation of ρσ . To the extent that 

the pi correlations in the i-th study are dependent, conventional meta-analytic procedures are 

not valid because the assumption of independence is violated. The samplewise procedure is 

then usually used to avoid the problem by computing an average correlation for the study 

with multiple effect sizes: 
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The i-th study is then treated as contributing one single correlation, ir , and any 

conventional meta-analytic procedure can be applied. In practice, the average sample size for 

the i-th study is usually used as the sample size associated with ir .  

This samplewise procedure, although easy to use, tends to underestimate the degree 

of heterogeneity of the population correlation, ρσ  (Cheung & Chan, 2004; Viswesvaran, 

Sanchez, & Fisher, 1999). In the extreme situation in which correlations are actually 

independent despite coming from the same sample, the average sample size will 

underestimate the sampling variance of ir . The samplewise procedure is appropriate only 

when the correlations are extremely dependent and hence the variation among dependent 

correlations is close to the sampling variance as estimated by the average sample size.  

The Adjusted Procedures 

Cheung and Chan (2004), based on the work of Martinussen and Bjornstad (1999), 

proposed two adjusted procedures that incorporate an estimate of the degree of dependence. 

As discussed above, one source of error in the samplewise procedure is the biased estimation 

of the sampling variance. If we can estimate the degree of dependence and adjust the sample 

size accordingly, then we can apply the common meta-analytic procedures on the averaged 

dependent correlations ( ir ). Using an approach similar to the estimate of interrater agreement 

by James, Demaree, and Wolf (1993), Cheung and Chan (2004) proposed an estimate of the 

degree of dependence in the i-th study, 
rriρ̂ , which is the estimated correlation between any 

two sample correlations contributed by the i-th study: 
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This estimate is then used to compute the adjusted sample size for ir , 

( ) 11 +−= iii Cnn , where  
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In the adjusted-individual procedure, rr̂  is computed for each study with multiple 

effect sizes, and the sample size for each of these studies is adjusted by the estimated degree 

of dependence. In the adjusted-weighted procedure, the sample size weighted mean of rr̂ , 

denoted as 
rr̂ , is used to adjust the sample sizes of all studies with multiple effect sizes. 

These two procedures are preferable to the samplewise procedure. Without the need 

to know the correlations among all variables, the degree of dependence is estimated by the 

observed variance of the dependent correlations. Once the sample size has been adjusted by 

the estimated degree of dependence, similar to the samplewise procedure, any common 

procedure for meta-analysis can be applied. 

Cheung and Chan (2004) demonstrated in a simulation study that the adjusted 

procedures resulted in fairly accurate estimate of the degree of heterogeneity when some of 

the correlations were dependent. However, as acknowledged by Cheung and Chan (2004), 

they limited their study to conditions in which the degree of dependence is constant across 

studies. That is, rr  was constant both across and within all studies in the same replication. 

Although it seems to be acceptable as an initial investigation of a new procedure, this 

assumption is highly unrealistic in application. For example, suppose there are several 

longitudinal studies measuring the motivation-performance correlation at two different time 

points. It seems unreasonable to assume that the test-retest correlations (i.e., the degree of 

dependence) are identical across studies, even though the studies may differ in the time 

between the two time points, settings, samples, measures, jobs, and other variables. As 

another example, suppose a single study measured the attitude-intention correlation of several 

different behaviors (e.g., teeth brushing, blood donation, class attendance, etc.). It seems 

unreasonable to assume that the inter-correlations among the variables on different behaviors 
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are identical. Therefore, to have a better understanding of these adjusted procedures in 

realistic situations, we aim to investigate the case in which the degree of dependence, rr , 

varies both within and across studies. 

The Case of Heterogeneous Degree of Dependence 

First, we examine the sampling variance of the within sample average, ir . 

According to Cheung and Chan (2004, Appendix B, based on the derivation by Martinussen 

& Bjornstad, 1999), the sampling variance is given approximately by 
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where ( ) 221 iE −  is the expectation of ( )221 i− . 

The derivation in Cheung and Chan (2004) does not assume homogeneous degree of 

dependence across samples. Therefore, we only examine analytically the case of 

heterogeneous degree of dependence within a sample. Let us assume that the degree of 

dependence within the i-th sample is not constant, and let bist be the correlation between ris 

and rit. then the equation becomes 

( ) ( ) 

















+

−

−
+


= =

2

1 1

22
2

1

1

i

p

s

p

t

isti

i

i
i

p

bp

n

E
rV

i i


  , where s  t. (5) 

Let 
••ib  be the average of bist for the i-th study, then equation becomes 
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This formula is identical to Equation 4 for the case of homogeneous degree of 

dependence, except that 
rriρ  is replaced by 

••ib . 
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Following the same rationale in Cheung and Chan (2004), this result suggests that 

we can adjust the sample size by Ci, where 
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(7) 

Therefore, if the average degree of dependence is known, the correction factor Ci and 

the adjusted sample size can be computed even when the degree of dependence is 

heterogeneous within the same study. 

As apparent in the similarity between Equations 4 and 6, by substituting 
••ib  for 

rriρ  in Equation B2 in Cheung and Chan (2004), it can be shown that we can use the same 

equation for 
rriρ̂  as proposed by Cheung and Chan (2004) to estimate 

••ib : 
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In sum, although the derivation of the formulas are not exactly the same, it happens 

that the adjusted procedures proposed by Cheung and Chan (2004) are also applicable to the 

case of heterogeneous degree of dependence without any special treatment. Moreover, we 

made no assumption on the distribution of the degree of dependence within a sample, and did 

not require the knowledge of the standard deviation of the degree of dependence to estimate 

the correction factor. 

The Monte Carlo Study 

Although we can demonstrate that the adjusted procedures are applicable even when 

the degree of dependence varies within a study, a simulation study is necessary to empirically 

assess the performance of the procedures. We conducted a simulation study based on the one 

by Cheung and Chan (2004). In addition to introducing variations in the degree of 

dependence, we also made two major modifications to investigate the generalizability of their 

findings. First, instead of examining the two specific patterns used in their study, namely 
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minor multiplicity (each study contributes only one or two effect sizes) and skewed 

distribution (some studies contribute a large number of effect sizes, while most other studies 

contribute only one effect size), we randomly generated the pattern of distribution of the 

effect sizes across studies (details to be described in the Method section). Although this 

approach prevents us from investigating the effect of any specific pattern, this allows us to 

generalize our findings to all possible patterns. 

Second, instead of using a normal distribution to randomly generate the population 

correlation (ρi) and the degrees of dependence (bist) for each study, we used the Beta 

distribution for this purpose. In all heterogeneous conditions, the population correlation and 

the degree of dependence were restricted to a minimum of zero and a maximum of .95 (we 

believe this is a reasonable upper limit for population correlation in most real studies). The 

parameters of the Beta distribution were determined such that the mean and standard 

deviation were of the desired values. For example, in the heterogeneous conditions with a 

average population correlation of .30 and a standard deviation of .10, the randomly generated 

correlation followed a Beta distribution with a mean of .30, a standard deviation of .10, a 

minimum of zero, and a maximum of .95. In other words, even though there was true 

variation across studies, the population correlation was never negative. The upper limit of .95 

prevents any confounding in results due to possible severe deviation from normality of 

sampling distribution at extreme values of correlation. We believe this would not severely 

limit the coverage of our conditions because a population correlation of .95 or higher, though 

possible, is rare in actual studies. The use of a Beta distribution allows us to impose a lower 

bound and upper bound of the distribution while keeping the mean and standard deviation as 

specified, without the need to discard out-of-range values generated. In our cases, it is 

reasonable to impose the lower and upper bounds. For example, when the dependence is due 

to test-retest correlation, we may expect that the test-retest correlation varies across situation, 
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but we rarely expect this correlation to be negative in some cases and positive in other cases. 

Beta distribution allows us to specify the mean and standard deviation a priori while at the 

same time setting a lower and upper limits to the generated degree of dependence. 

Power to Detect Genuine Heterogeneity 

Meta-analyses of applied studies, especially those adopting the Hunter-Schmidt 

approach, emphasize on the estimation of the true variation and not on the heterogeneity 

significance test. This is natural because in the analysis of all the collected effect sizes, the 

total sample size and the number of studies are usually substantially large, leading to high 

statistical power to detect even a small true variation. However, most meta-analysts would 

also conduct subgroup analyses to investigate the variation of effect sizes in theoretically 

meaningful subgroups. The number of studies in each subgroup is usually much smaller for 

these subsequent analyses, some may be as small as ten or even fewer. In these subgroup 

analyses, it is not uncommon to find nonsignificant heterogeneity. Statistical power is a 

concern for this kind of subgroup analyses. To the extent that the samplewise procedure 

underestimates the true variation, the statistical power will also decrease. If the two adjusted 

procedures, after taking into account the estimated degree of dependence, lead to a more 

accurate estimation of the true variation, they should also have larger statistical power than 

the samplewise procedure. Therefore, in the present study, we also examined the empirical 

power of the three procedures in detecting true variation in population correlation.  

Method 

For each study, given the population correlation  and a sample size of n, n cases 

were generated based on the following formula: 

( ) exy −+= 21  , (9) 

where x and e are random variables following a normal distribution with a mean of zero and a 

standard deviation of one. The x’s and y’s then have an underlying standard normal 
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distribution with a population correlation equal to . As detailed below, variation in 

population correlation was introduced by varying  across studies, and within-study 

dependence was introduced by forming common components for x and e for cases from the 

same study. 

To maintain comparability, we manipulated factors similar to those used in Cheung 

and Chan (2004), with some modifications and improvements. Six factors were examined. 

First, the numbers of studies (K) examined were 12 and 60. Cheung and Chan did not find 

noticeable curvilinear relationship between the results and the number of studies. Moreover, 

the exact form of the relationship between the number of studies and the performance of the 

three procedures is not our focus. Therefore, we retained only these two conditions to 

represent the small and large scale meta-analyses respectively. The number of studies in 

actual meta-analysis varies widely. Moreover, even if the total number of studies is large in a 

meta-analysis, the number of studies can still be quite small for subgroup analysis in the same 

meta-analysis. Therefore, we selected the small and large conditions from Cheung and Chan 

to represent the two ends of the continuum of number of studies. The numbers of correlations 

(KE) were 16 and 80 for conditions with 12 and 60 studies respectively. In other words, the 

K:KE ratio was fixed to 3:4. Instead of examining specific patterns of multiple effect sizes as 

in Cheung and Chan, we randomly generated the pattern for each replication. For example, if 

the number of studies was 12 and the number of effect sizes was 16, we first assigned one 

effect size to each of the 12 studies. For each of the remaining four effect sizes, we randomly 

assigned it to one of the 12 studies. This process was repeated until all the remaining four 

effect sizes were assigned. In other words, for each condition, some replications may have 

eight studies with one effect size and four studies with two effect sizes, while some 

replications may have 11 studies with one effect size and one study with five effect sizes. 

This procedure ensures that any possible pattern could have a chance to appear in the 
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simulation, thus allowing us to generalize the results to all possible patterns, instead of the 

two specific ones studied by Cheung and Chan (2004). 

Second, the average sample sizes examined were 100 and 300. The average sample 

size in published meta-analysis varies widely, from around 100 (e.g., Dwight & Feigelson, 

2000; Nesbit & Adesope, 2006; ) to 300 or more (e.g., Gershoff, 2002; Thoresen, Kaplan, 

Barsky, Warren, & de Chermont, 2003; Wang, Jiao, Young, Brooks, & Olson, 2007). In the 

present study, we focused on meta-analyzing sample correlation. A sample size of 100 seems 

to be a reasonable minimum average sample size for this kind of studies. Therefore, an 

average sample size of 100 was selected as one of the conditions. To empirically examine the 

samplewise and the two adjusted procedures in meta-analysis with large average sample size, 

we selected an average sample size of 300 as the other condition. We extended the Cheung 

and Chan (2004) study by using a larger maximum average sample size because this is 

common in correlational studies to have sample sizes larger than 200. To generate the sample 

size for each sample in each replication, a method similar to that used by Field (2001) was 

adopted. The sample sizes across samples were drawn from a normal distribution with a 

standard deviation equal to the average sample size divided by five. For example, in the 

conditions that the average sample size equals 300, the sample sizes were drawn from a 

normal distribution with a standard deviation of 60. 

Third, two different values of average population correlation, • , were examined, 

namely .30 and .50, to represent the range of effect sizes commonly found in published 

meta-analysis. We focused on cases with population effect sizes vary across studies but in the 

same direction. Therefore, we did not include small average population (.10), which would 

not be able to obtain a true variation of .10 (in standard deviation) without leading to an 

extremely skewed distribution. Fourth, we manipulated the degree of heterogeneity. Three 

values of 
2 were chosen, 0, .0025 and .01, which correspond to standard deviations of 0, .05, 
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and .10 respectively. Therefore, both fixed effects and random effects situations were 

examined (Hedges & Vevea, 1998). In the fixed effects situation, all studies have the same 

population correlation. In the random effects situations, the population correlation varies 

across studies. For the heterogeneous conditions (random effects situations) in which 
2 is 

greater than zero, we defined the parameters of a beta distribution such that the mean was • , 

the standard deviation was , the minimum was zero, and the maximum was .95. 

The fifth and sixth factors were the average degree of dependence, rr• , and 

standard deviation of the degree of dependence. We adopted the three degrees of dependence 

used in Cheung and Chan (2004), but extended their study by introducing random variation to 

the degree of dependence. Three levels of rr• were chosen, .09, .3025, and .49, to represent 

small, medium, and large effects as defined by Cohen (1988). Ideally, .10, .30, and .50 should 

be used. However, as discussed below, the parameters used were the square roots of these 

values, and for simplicity, we used values (.30, .55, and .70) to closely approximate the three 

levels of effect sizes. As in Cheung and Chan, a repeated measures model was adopted to 

model the dependence of the correlations. For example, the dependence might arise because 

the correlation between attitude and intention for the same behavior was assessed at two 

different times. To the extent that the attitude scores at the two different times were correlated, 

and the error terms (variation in intention not explained by attitude) were also correlated at 

the two different times, the correlation would be dependent. The parameters for the model 

are xx• , the average correlation between x’s (attitude scores in the above example) within a 

sample, and ee• , the average correlations between e’s (unexplained variance in intention in 

the above example) within a sample (for technical details, please see Cheung and Chan, 

2004). The degree of dependence among the predictor variable x and among the error e could 

be translated into dependence among correlations, rri. As shown in Appendix C in Cheung 



Dependent Correlations 14 

and Chan, when xx and ee both equal .30, degree of dependence is .09. To achieve the 

selected degrees of dependence, the configurations of xx•  and ee•  adopted were 

(.30, .30), (.55, .55), and (.70, .70). The corresponding average degrees of dependence are 

approximately .09, .3025, and .49 respectively. To manipulate the sixth factor, we adopted 

the beta distribution with a lower bound of zero and an upper bound of .95 to generate the xx 

and ee for each effect size. Two levels of standard deviations of xx and ee, .05 and .10, were 

used. This would result in the two degrees of variation in the degree of dependence within a 

study. We did not include the condition of constant degree of dependence because it has been 

studied in Cheung and Chan. 

In sum, we examined six different factors in the Monte Carlo study, namely, the 

number of studies (12 and 16), the average sample size (100 and 300), the average population 

correlation (.30 and .50), the standard deviation of the population correlation (0, .05, and .10), 

the average degree of dependence (.09, 3025, and .49), and the degree of variation in the 

degree of dependence (standard deviation of xx/ee: 05 and .10). The total number of 

conditions was 72. The number of replications for each condition was 2,000. The theoretical 

distribution of the sample proportion, given a population proportion of .50 and 2,000 cases, is 

about .011. Therefore, 2,000 replications would lead to an accurate estimation of the 

statistical power. 

Results 

Estimating the Population Correlation ( • ) 

The mean estimated population correlation (or average population correlation, when 

between study heterogeneity was present) was close to the true value in all situations. For 

conditions with • =.30, the average estimated population correlation ranged from .297 

to .301. For conditions with • =.50, the average estimated population correlation ranged 

from .496 to .500. When rounded to the second decimal place, the average estimated 
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population correlation was equal to the true value in all conditions. Therefore, the estimation 

of the average population correlation was practically unbiased in all situations and for all 

three methods. 

Coverage Probabilities of the 95% and 90% Confidence Intervals 

The empirical coverage probabilities of the 95% and 90% confidence intervals were 

examined. Due to similar results across some conditions, only the results for different degrees 

of heterogeneity (
2), different degrees of variation in degree of dependence (different 

standard deviations of xx/ee), and different degree of dependence ( rr• ) were examined, 

with other conditions within the same combination of these three factors were collapsed 

together. The coverage probabilities are presented in Table 2. In general, the coverage 

probabilities were close to the nominated values, although slight over–coverage was observed 

when the population correlations were homogeneous ( = 0) and when the samplewise 

procedure was used. 

Estimating the Average Degree of Dependence ( rr• ) 

The average mean squared errors of the estimated average degree of dependence are 

presented in Table 1. In general, the accuracy of the two adjusted procedures was similar 

across conditions. The results were also similar for the two average sample sizes (100 and 

300) and the two average population correlations (.30 and .50). The average estimates were 

closer to the population average degree of dependence when the number of studies was 60 

than when it was 12. Moreover, the higher the average degree of dependence, the smaller the 

error was. In sum, the error was largest when the number of studies was 12 and the 

population average degree of dependence was small (.09). 

Estimating the Degree of Heterogeneity (
2) 

The means of the estimated degree of heterogeneity for 
2 equal to .0000 and .0100 

were reported in Figures 1 and 2 respectively. Examining these two conditions with the 
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intermediate condition (
2 equal to .0025) did not suggest any U-shaped relationship, and so 

results for 
2 equal to .0025. Similarly, examining the three conditions of average degrees of 

dependence ( rr•  = .49, .30, and .09) did not suggest any U-shaped relationship. Therefore, 

only results for rr•  equal to .49 and .09 were reported in each figure to ensure the 

readability of the figures, As shown in the figures, the samplewise procedure was the most 

negatively biased (i.e., underestimating the true variations) in most conditions, even when the 

average sample size was 300. The adjusted-weighted procedure, on the other hand, was the 

least biased in most conditions. The adjusted-individual procedure, though more biased than 

the adjusted-weighted procedure, still performed better than the samplewise procedure in 

most conditions.  

In general, the larger the average sample size, the less biased the estimation for all 

three procedures. The benefit of large sample size was especially apparent for the samplewise 

procedure. On the other hand, as shown in Figure 2, increase in the number of studies also 

seemed to decrease the bias when true variations existed (
2 > 0). In most conditions, the 

bias when the average population correlation ( • ) was medium (.50) was also smaller than 

when the average population correlation was small (.30). 

When comparing conditions with different average degrees of dependence ( rr• ), it 

was found that the bias of the samplewise estimate decreased when the average degree of 

dependence increased. That is, in general, the higher the degree of dependence (the thicker 

the line), the smaller the bias (the higher the line). The two adjusted procedures seemed to be 

similarly affected by the average degree of dependence, but to a lesser extent. 

When considering the variation in the degree of dependence (standard deviation of 

xx/ee: 05 versus .10), the biases of both the samplewise procedure and the 

adjusted-individual procedure seemed to be smaller when the variation was larger. The 
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variation in the degree of dependence, on the other hand, had no consistent effect on the 

adjusted-weighted procedure. 

Empirical Power to Detect True Variations 

Due to space limit, only the results for K=12 were reported, because it is unlikely 

that the number of studies in subgroup analysis is as large as 60. In most conditions, the 

empirical power of the samplewise procedure was smaller than the two adjusted procedures, 

especially when the average sample size was 100. Averaged across conditions, empirical 

power of the samplewise procedure was 5.2% less than that of the adjusted-individual 

procedure, and 6.5% less than that of the adjusted-weighted procedure. The two adjusted 

procedures, on the other hand, had similar empirical power in most situations (average 

difference across situation was 1.4%). When the true variation was small ( = .05), the 

power disadvantage of the samplewise procedure was as large as .10 even when the average 

sample was 300, that is, 10% less likely to detect the true variation when compared to the two 

adjusted procedures. The three procedures had similar empirical power when the average 

sample size was 300 and the true variation was large ( = .10), ranged from 95% to nearly 

100%. Last, the degree of dependence had negligible influence on the empirical power of 

each procedure. 

Discussion 

The simulation results provide further support for the two adjusted procedures. Even 

when the degree of dependence is heterogeneous both across and within studies, our results 

suggest that the adjusted-weighted and adjusted-individual procedures still yielded more 

accurate estimates of the degree of heterogeneity than the commonly used samplewise 

procedure. The two adjusted procedures were also statistically more powerful to detect true 

variation, especially when the number of studies was small. The present study also suggests 

that the advantage of the adjusted procedures over the samplewise procedures was not 
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specific to the two patterns of distribution of effect sizes across studies that were examined in 

Cheung and Chan (2004). In the present study, the patterns were randomly generated and so 

the results found could be in principle generalized to all possible patterns. We also examined 

the conditions with large average sample size (300), and found that the samplewise procedure 

was still the most biased procedure even when the average sample size was large. It should be 

noted that the large sample size did help to decrease its bias. In sum, our results suggest that 

the two adjusted procedures should be used instead of the samplewise procedure when some 

studies contribute more than one effect size and there is insufficient information to apply the 

analytic procedures available. 

As mentioned earlier, the samplewise procedure essentially assumes that the several 

effect sizes given by the same study are highly dependent. Therefore, the bias of the 

samplewise procedure should decrease as the average degree of dependence increase. This 

relationship was found in Cheung and Chan (2004), and is replicated in the present study. 

Moreover, when comparing the two adjusted procedures, our results suggest that even when 

the degree of dependence varies across studies, one should use the weighted average 

estimated degree of dependence to adjust the sample size of all within study average 

correlations (the adjusted-weighted procedure), instead of, as would be suggested by intuition, 

adjusting each within study average using the estimated degree of dependence of that 

particular study (the adjusted-individual procedure). We believe that this finding may be 

related to the sampling error associated with the estimate of dependence for each study. The 

weighted average estimate of dependence should have much less sampling error than 

individual estimates. To the extent that the accuracy of the estimate of degree of 

heterogeneity depends on the expectation of the sampling error instead of the expectation of 

the estimated sampling error of each individual study, the weighted average instead of the 

individual estimates would produce a more accurate estimate of the degree of heterogeneity. 
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Note that this is the same rationale that Schmidt, Law, Hunter, and Rothstein (1993) used to 

support their use of average correlation, instead of individual correlations, to compute the 

sampling error of the weighted average correlation in meta-analysis. 

Although we focused on the estimation and the significance test of the degree of 

heterogeneity, two aspects of the results also warranted discussion, the estimation of the 

average population correlation and the coverage probability of the confidence intervals. As in 

Cheung and Chan (2004), we found that the three procedures were accurate in estimating the 

average population correlation even when the degree of dependence varied within study. 

Moreover, the coverage probabilities of the 95% and 90% confidence intervals, though not 

exact, were close to the nominated level for all three procedures in most of the conditions 

examined. This suggests that if the main goal is to form point and interval estimates of the 

average population correlations, the three procedures would yield similar results. 

The present study extends previous research by studying the more realistic situation 

of heterogeneous degree of dependence. However, four limitations should be noted. First, 

both the present study and the study by Cheung and Chan (2004) did not examine the 

presence of measurement error. To the best of our knowledge, the derivation of Hunter and 

Schmidt approach assumes independent effect sizes and may not work when the effect sizes 

are dependent, although there are some rules of thumb that are similar to the samplewise 

procedure. To expand the scope of application of both the adjusted procedures proposed and 

the Hunter and Schmidt approach, we need to incorporate the adjustment for dependent effect 

sizes into their approach with correction for artifacts. Second, both the present study and the 

study by Cheung and Chan (2004) were limited to the case that the within study population 

correlation is fixed. We believe this is a reasonable assumption, because differences in 

moderator variables, if any, are likely to be larger between studies than within studies. 

However, the scope of application of the adjusted procedures would be broader if this 
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assumption is relaxed. Future studies are necessary to revise the adjusted procedures to allow 

within study variation in the population correlation. Third, in the present study, we only 

investigated situations with positive average population correlations. It is possible that in 

some areas, a moderator may actually reverse the direction of an effect, leading to a small or 

even zero average population correlations. In this situation, the Type I error rates of the 

significance test of the zero average population correlations should be examined for the 

adjusted procedures. Fourth, like Cheung and Chan (2004), we adopted two assumptions that 

may not hold in some meta-analytic studies. We used a repeated measures model to generate 

within-study dependence. This is a plausible mechanism when the dependence is due to 

multiple assessments of the same or a similar pair of variables (e.g., attitude-intention 

correlation). However, there may be other forms of dependence in actual studies. Moreover, 

we assumed equal average xx and ee. Although we have relaxed the implausible assumption 

of equal xx and ee across studies made by Cheung and Chan (2004), it is reasonable to 

expect unequal average xx and ee in some actual studies. For example, for the case of 

repeated measures, the dependence among attitudes may be stronger than the dependence 

among measurement errors, leading to higher average xx than average ee. Although the 

derivation of the two proposed procedures does not depend on the mechanism leading to 

dependence, future studies should empirically examine the performance of the proposed 

procedure when these two assumptions are relaxed. 
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Table 1. The Average Mean Squared Error in Estimating the Average Degree of Dependence Across Conditions 

    Average Population Correlation ( • ) = .30 Average Population Correlation ( • ) = .50 

   Estimation Individual Weighted Individual Weighted 

   rr•  .09 .30 .49 .09 .30 .49 .09 .30 .49 .09 .30 .49 


2 SD( xxρ ) N  K/KE             

.0000 .05 100 12/16 .135 .107 .082 .136 .108 .083 .138 .108 .084 .139 .109 .084 

   60/80 .040 .040 .028 .041 .040 .029 .039 .041 .029 .040 .042 .030 

  300 12/16 .140 .108 .084 .143 .109 .085 .141 .109 .084 .144 .109 .084 

   60/80 .039 .037 .027 .040 .038 .027 .040 .038 .027 .041 .039 .028 

 .10 100 12/16 .140 .100 .087 .142 .100 .087 .141 .102 .086 .144 .102 .087 

   60/80 .040 .039 .031 .041 .040 .032 .040 .040 .033 .041 .041 .033 

  300 12/16 .138 .105 .086 .140 .105 .087 .138 .104 .087 .139 .104 .087 

   60/80 .041 .039 .029 .042 .040 .030 .040 .040 .029 .041 .041 .029 

.0025 .05 100 12/16 .139 .105 .082 .141 .106 .083 .137 .110 .087 .139 .110 .087 

   60/80 .039 .040 .029 .040 .040 .030 .040 .040 .032 .042 .041 .033 

  300 12/16 .137 .107 .085 .139 .108 .085 .137 .105 .083 .138 .105 .085 

   60/80 .041 .040 .027 .042 .041 .029 .039 .040 .027 .040 .041 .028 

 .10 100 12/16 .143 .104 .087 .145 .106 .087 .137 .105 .085 .138 .106 .085 

   60/80 .043 .041 .028 .044 .041 .029 .038 .041 .031 .039 .042 .032 

  300 12/16 .137 .104 .085 .138 .105 .086 .140 .107 .090 .142 .108 .090 

   60/80 .040 .040 .028 .042 .040 .029 .040 .040 .028 .041 .041 .029 

.0100 .05 100 12/16 .145 .107 .087 .148 .107 .088 .156 .113 .086 .159 .114 .086 

   60/80 .039 .040 .030 .041 .040 .031 .042 .042 .031 .043 .042 .031 

  300 12/16 .147 .105 .085 .149 .106 .087 .148 .110 .086 .150 .111 .086 

   60/80 .043 .039 .027 .044 .040 .028 .042 .039 .028 .043 .040 .029 

 .10 100 12/16 .144 .104 .087 .146 .105 .088 .151 .108 .092 .154 .109 .093 

   60/80 .041 .040 .029 .042 .041 .030 .038 .040 .030 .039 .041 .031 

  300 12/16 .145 .104 .087 .149 .106 .088 .151 .108 .086 .153 .109 .087 

   60/80 .042 .039 .028 .043 .040 .029 .044 .040 .032 .045 .041 .033 

Note: N : Average sample sizes; K: Number of studies; KE: Number of correlations; Individual: Adjusted-individual procedure; Weighted: 

Adjusted-weighted procedure; 
2: Variation of population correlations; rr• : Average degree of dependence. 
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Table 2. The Coverage Probabilities of the 95% and 90% Confidence Intervals Across Conditions 

    Samplewise Individual Weighted 

   rr•  .09 .30 .49 .09 .30 .49 .09 .30 .49 

 
2 SD( xxρ )           

95% 

Confidence 

Interval 

.0000 .05  .97 .97 .97 .96 .96 .96 .96 .96 .96 

 .10  .97 .96 .96 .96 .96 .96 .96 .96 .96 

.0025 .05  .94 .94 .94 .94 .94 .94 .94 .94 .94 

 .10  .95 .94 .94 .94 .94 .94 .94 .94 .94 

.0100 .05  .94 .93 .94 .94 .93 .93 .94 .93 .93 

 .10  .94 .94 .94 .93 .94 .94 .93 .94 .94 

90% 

Confidence 

Interval 

.0000 .05  .93 .93 .93 .92 .91 .91 .92 .92 .92 

 .10  .93 .93 .92 .92 .91 .91 .92 .92 .91 

.0025 .05  .90 .89 .89 .89 .88 .89 .89 .88 .89 

 .10  .89 .89 .90 .89 .89 .89 .89 .89 .89 

.0100 .05  .89 .88 .88 .88 .88 .88 .88 .88 .88 

 .10  .88 .89 .89 .88 .89 .89 .88 .89 .89 

 

Note: Samplewise: Samplewise procedure; Individual: Adjusted-individual procedure; Weighted: Adjusted-weighted procedure; 
2: Variation of 

population correlations; rr• : Average degree of dependence.
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Figure Captions  

Figure 1. The Average Estimated Degree of Heterogeneity (
2 = .0000). 

Figure 2. The Average Estimated Degree of Heterogeneity (
2 = .0100). 
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Figure 1. The Average Estimated Degree of Heterogeneity (
2 = .0000)  
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Figure 1b. Average ρ = .30, SD (ρxx)=SD (ρee)=.10  

 

Figure 1c. Average ρ = .50, SD (ρxx)=SD (ρee)=.05  Figure 1d. Average ρ = .50, SD (ρxx)=SD (ρee)=.10  

 

Figure 1a. Average ρ = .30, SD (ρxx)=SD (ρee)=.05  

Note: True population degree of heterogeneity (
2) is .0000. Average degree of 

dependence ( rr• ) in parentheses (.49 and .09). 
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TOP 

Figure 2. The Average Estimated Degree of Heterogeneity (
2 = .0100)
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Figure 2a. Average ρ = .30, SD (ρxx)=SD (ρee)=.05  Figure 2b. Average ρ = .30, SD (ρxx) =SD (ρee)=.10  

 

Figure 2c. Average ρ = .50, SD (ρxx)=SD (ρee)=.05  Figure 2d. Average ρ = .50, SD (ρxx)=SD (ρee)=.10  

 

Note: True population degree of heterogeneity (
2) is .0100. Average degree of 

dependence ( rr• ) in parentheses (.49 and .09). 


