Dependent Correlations 1

Running head: DEPENDENT CORRELATIONS

Accepted for publication in Educational and Psychological Measurement:

Cheung, S. F., & Chan, D. K-S. (2008). Dependent correlations in meta-analysis: The case of
heterogeneous interdependence. Educational and Psychological Measurement, 68, 760-777.
d0i:10.1177/0013164408315263

This is the accepted version and is not identical to the final published version. Please do not
cite this version. The final published version can be obtained at:
https://dx.doi.org/10.1177/0013164408315263

Dependent Correlations in Meta-Analysis: The Case of Heterogeneous Dependence

Shu Fai Cheung
University of Macau
Darius K-S. Chan

Chinese University of Hong Kong

Author Notes: Shu Fai Cheung, Department of Psychology; Darius K-S. Chan, Department of
Psychology. Correspondence concerning this article should be addressed to Shu Fai Cheung,

Department of Psychology, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau, or

by email (sfcheung@umac.mo). [Current email address: sfcheung@um.edu.mo]



https://dx.doi.org/10.1177/0013164408315263
mailto:sfcheung@umac.mo
mailto:sfcheung@um.edu.mo

Dependent Correlations 2
Abstract

In meta-analysis, it is common to have dependent effect sizes, such as several effect sizes
from the same sample but measured at different times. Cheung and Chan (2004) proposed the
adjusted-individual and adjusted-weighted procedures to estimate the degree of dependence
and incorporate this estimate in the meta-analysis. The present study extends the previous
study by examining the case of heterogeneous degree of dependence. Simulation results
reveal that these two procedures again generated less biased estimates of the degree of
heterogeneity than the commonly used samplewise procedure, and were statistically more
powerful to detect true variations. In addition, the adjusted-weighted procedure generated
slightly less biased estimates of the degree of heterogeneity than the adjusted-individual
weighted procedure across conditions. Future directions to further refine these procedures are

discussed.
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Dependent Correlations in Meta-Analysis: The Case of Heterogeneous Interdependence

Most popular statistical procedures in meta-analysis assume that the effect sizes are
independent. However, it is not uncommon to encounter studies that contribute more than one
effect size from same samples (e.g., Chapman, Uggerslev, Carrol, Piasentin, & Jones, 2005;
Williams, McDaniel, & Nguyen, 2006; Zhao & Seibert, 2006). Statistical procedures have
been proposed to handle this kind of dependent effect sizes (e.g., Gleser & Olkin, 1994,
Hunter & Schmidt, 1990). Generalized least squares approach (Becker, 1992) and
hierarchical linear modeling (Bryk & Raudenbush, 2002), when applied to meta-analysis, can
also take into account the degree of dependence among the effect sizes. However, all these
approaches require knowledge of the intercorrelations or covariances between the dependent
effect sizes. In reality, these pieces of information are rarely available in published studies.
This might be one of the reasons why the aforementioned analytic approaches were seldom
used.

If the degree of dependence is unknown, one approach is to impute an estimate
based on previous research. However, in most situations, it is difficult to decide what the best
estimate should be. Another approach is to avoid the problem of non-independence by
averaging the dependent effect sizes. This approach, denoted as the samplewise procedure by
Cheung and Chan (2004), is a commonly adopted approach in published meta-analytic
reviews, probably because of its simplicity and easiness to use. To avoid inflating the sample
size, the original or average sample size is usually used as the weight for the average effect
size of a particular sample or study. However, Cheung and Chan (2004) illustrated in their
simulation study that the samplewise procedure tended to underestimate the degree of
heterogeneity.

Cheung and Chan (2004) instead proposed to estimate the degree of dependence

from the limited information and incorporate this estimate in the meta-analysis. Specifically,
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these authors proposed two procedures, denoted as the adjusted-individual procedure and
adjusted-weighted procedure, to incorporate the estimated degree of dependence in the
meta-analysis. In their simulation study, they found that these two procedures were less
biased than the samplewise procedure in estimating the degree of heterogeneity in
meta-analysis. However, there were limitations in their study. For example, they only
examined cases in which the degree of heterogeneity was homogeneous across samples - an
unrealistic situation in meta-analysis. In the present study, we extend their study by
examining a more realistic situation in actual meta-analysis, i.e., the case of heterogeneous
degree of dependence across studies.

The Samplewise Procedure
In the present study, we focus our discussion on correlation (Pearson r), a popular
estimate of effect sizes in meta-analysis of applied research. Suppose there are K studies in a
meta-analysis, each contributes p;i correlations. We denote the j-th sample correlation

contributed by the i-th study by r.

;» Which is an estimate of the population correlation, p; .
We assume that the K studies are heterogeneous, and the population correlations follow an
arbitrary distribution with a mean of p, and a standard deviation of ¢ ,. To the extent that
the pi correlations in the i-th study are dependent, conventional meta-analytic procedures are
not valid because the assumption of independence is violated. The samplewise procedure is

then usually used to avoid the problem by computing an average correlation for the study

with multiple effect sizes:

rij
= 1)
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The i-th study is then treated as contributing one single correlation, r,, and any

conventional meta-analytic procedure can be applied. In practice, the average sample size for

the i-th study is usually used as the sample size associated with T, .

This samplewise procedure, although easy to use, tends to underestimate the degree

of heterogeneity of the population correlation, o, (Cheung & Chan, 2004; Viswesvaran,

Sanchez, & Fisher, 1999). In the extreme situation in which correlations are actually
independent despite coming from the same sample, the average sample size will

underestimate the sampling variance of T,. The samplewise procedure is appropriate only

when the correlations are extremely dependent and hence the variation among dependent
correlations is close to the sampling variance as estimated by the average sample size.
The Adjusted Procedures

Cheung and Chan (2004), based on the work of Martinussen and Bjornstad (1999),
proposed two adjusted procedures that incorporate an estimate of the degree of dependence.
As discussed above, one source of error in the samplewise procedure is the biased estimation
of the sampling variance. If we can estimate the degree of dependence and adjust the sample
size accordingly, then we can apply the common meta-analytic procedures on the averaged

dependent correlations (T;). Using an approach similar to the estimate of interrater agreement

by James, Demaree, and Wolf (1993), Cheung and Chan (2004) proposed an estimate of the

degree of dependence in the i-th study, p,,;, which is the estimated correlation between any

two sample correlations contributed by the i-th study:

2

. i Z(rij _ri)z/(pi _1)
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This estimate is then used to compute the adjusted sample size for T,

)

n, =(n, —1)/C, +1, where
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Ci — 1+(pip_-l)lbrri ) (3)

In the adjusted-individual procedure, p,, is computed for each study with multiple

effect sizes, and the sample size for each of these studies is adjusted by the estimated degree

of dependence. In the adjusted-weighted procedure, the sample size weighted mean of p,,,

denoted as ,o_rr , IS used to adjust the sample sizes of all studies with multiple effect sizes.

These two procedures are preferable to the samplewise procedure. Without the need
to know the correlations among all variables, the degree of dependence is estimated by the
observed variance of the dependent correlations. Once the sample size has been adjusted by
the estimated degree of dependence, similar to the samplewise procedure, any common
procedure for meta-analysis can be applied.

Cheung and Chan (2004) demonstrated in a simulation study that the adjusted
procedures resulted in fairly accurate estimate of the degree of heterogeneity when some of
the correlations were dependent. However, as acknowledged by Cheung and Chan (2004),
they limited their study to conditions in which the degree of dependence is constant across

studies. Thatis, p,, was constant both across and within all studies in the same replication.

Although it seems to be acceptable as an initial investigation of a new procedure, this
assumption is highly unrealistic in application. For example, suppose there are several
longitudinal studies measuring the motivation-performance correlation at two different time
points. It seems unreasonable to assume that the test-retest correlations (i.e., the degree of
dependence) are identical across studies, even though the studies may differ in the time
between the two time points, settings, samples, measures, jobs, and other variables. As
another example, suppose a single study measured the attitude-intention correlation of several
different behaviors (e.g., teeth brushing, blood donation, class attendance, etc.). It seems

unreasonable to assume that the inter-correlations among the variables on different behaviors
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are identical. Therefore, to have a better understanding of these adjusted procedures in
realistic situations, we aim to investigate the case in which the degree of dependence, p,,,
varies both within and across studies.

The Case of Heterogeneous Degree of Dependence
First, we examine the sampling variance of the within sample average, .
According to Cheung and Chan (2004, Appendix B, based on the derivation by Martinussen

& Bjornstad, 1999), the sampling variance is given approximately by

V(F)r~o’+0’ =0+ 4
()=o) +ou=o,+== 7 > (4)

efe-pi)] {1+(pi —1)pm]

where E[(l— ol )2] is the expectation of (1— Pl )2 :

The derivation in Cheung and Chan (2004) does not assume homogeneous degree of
dependence across samples. Therefore, we only examine analytically the case of
heterogeneous degree of dependence within a sample. Let us assume that the degree of
dependence within the i-th sample is not constant, and let bist be the correlation between ris

and ri. then the equation becomes

P B
2| B +Zzbis
V(F,)z ol + kln_ ;0 iz) ] S;l.fl t , Where s # t. (5)

Let b, be the average of bist for the i-th study, then equation becomes

V) ot s E[(lni—ff f] BN o

This formula is identical to Equation 4 for the case of homogeneous degree of

dependence, except that p,; is replaced by b,,.
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Following the same rationale in Cheung and Chan (2004), this result suggests that

we can adjust the sample size by Ci, where

c — =t = Ibi.
I P; _ 0

Therefore, if the average degree of dependence is known, the correction factor Cjand
the adjusted sample size can be computed even when the degree of dependence is

heterogeneous within the same study.

As apparent in the similarity between Equations 4 and 6, by substituting b,,, for
P, In Equation B2 in Cheung and Chan (2004), it can be shown that we can use the same

equation for p, . as proposed by Cheung and Chan (2004) to estimate b,,, :

L~l-Oal- Z(rij —ri)z/(pi —1).
Se ﬁl_Fz)Z/(ﬂi _1)

In sum, although the derivation of the formulas are not exactly the same, it happens

b

(8)

that the adjusted procedures proposed by Cheung and Chan (2004) are also applicable to the
case of heterogeneous degree of dependence without any special treatment. Moreover, we
made no assumption on the distribution of the degree of dependence within a sample, and did
not require the knowledge of the standard deviation of the degree of dependence to estimate
the correction factor.
The Monte Carlo Study

Although we can demonstrate that the adjusted procedures are applicable even when
the degree of dependence varies within a study, a simulation study is necessary to empirically
assess the performance of the procedures. We conducted a simulation study based on the one
by Cheung and Chan (2004). In addition to introducing variations in the degree of
dependence, we also made two major modifications to investigate the generalizability of their

findings. First, instead of examining the two specific patterns used in their study, namely
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minor multiplicity (each study contributes only one or two effect sizes) and skewed
distribution (some studies contribute a large number of effect sizes, while most other studies
contribute only one effect size), we randomly generated the pattern of distribution of the
effect sizes across studies (details to be described in the Method section). Although this
approach prevents us from investigating the effect of any specific pattern, this allows us to
generalize our findings to all possible patterns.

Second, instead of using a normal distribution to randomly generate the population
correlation (pi) and the degrees of dependence (bist) for each study, we used the Beta
distribution for this purpose. In all heterogeneous conditions, the population correlation and
the degree of dependence were restricted to a minimum of zero and a maximum of .95 (we
believe this is a reasonable upper limit for population correlation in most real studies). The
parameters of the Beta distribution were determined such that the mean and standard
deviation were of the desired values. For example, in the heterogeneous conditions with a
average population correlation of .30 and a standard deviation of .10, the randomly generated
correlation followed a Beta distribution with a mean of .30, a standard deviation of .10, a
minimum of zero, and a maximum of .95. In other words, even though there was true
variation across studies, the population correlation was never negative. The upper limit of .95
prevents any confounding in results due to possible severe deviation from normality of
sampling distribution at extreme values of correlation. We believe this would not severely
limit the coverage of our conditions because a population correlation of .95 or higher, though
possible, is rare in actual studies. The use of a Beta distribution allows us to impose a lower
bound and upper bound of the distribution while keeping the mean and standard deviation as
specified, without the need to discard out-of-range values generated. In our cases, it is
reasonable to impose the lower and upper bounds. For example, when the dependence is due

to test-retest correlation, we may expect that the test-retest correlation varies across situation,
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but we rarely expect this correlation to be negative in some cases and positive in other cases.
Beta distribution allows us to specify the mean and standard deviation a priori while at the
same time setting a lower and upper limits to the generated degree of dependence.
Power to Detect Genuine Heterogeneity

Meta-analyses of applied studies, especially those adopting the Hunter-Schmidt
approach, emphasize on the estimation of the true variation and not on the heterogeneity
significance test. This is natural because in the analysis of all the collected effect sizes, the
total sample size and the number of studies are usually substantially large, leading to high
statistical power to detect even a small true variation. However, most meta-analysts would
also conduct subgroup analyses to investigate the variation of effect sizes in theoretically
meaningful subgroups. The number of studies in each subgroup is usually much smaller for
these subsequent analyses, some may be as small as ten or even fewer. In these subgroup
analyses, it is not uncommon to find nonsignificant heterogeneity. Statistical power is a
concern for this kind of subgroup analyses. To the extent that the samplewise procedure
underestimates the true variation, the statistical power will also decrease. If the two adjusted
procedures, after taking into account the estimated degree of dependence, lead to a more
accurate estimation of the true variation, they should also have larger statistical power than
the samplewise procedure. Therefore, in the present study, we also examined the empirical
power of the three procedures in detecting true variation in population correlation.

Method
For each study, given the population correlation p and a sample size of n, n cases

were generated based on the following formula:

y:pxx+(\/1—7)xe, 9)

where x and e are random variables following a normal distribution with a mean of zero and a

standard deviation of one. The x’s and y’s then have an underlying standard normal



Dependent Correlations 11
distribution with a population correlation equal to p. As detailed below, variation in
population correlation was introduced by varying p across studies, and within-study
dependence was introduced by forming common components for x and e for cases from the
same study.

To maintain comparability, we manipulated factors similar to those used in Cheung
and Chan (2004), with some modifications and improvements. Six factors were examined.
First, the numbers of studies (K) examined were 12 and 60. Cheung and Chan did not find
noticeable curvilinear relationship between the results and the number of studies. Moreover,
the exact form of the relationship between the number of studies and the performance of the
three procedures is not our focus. Therefore, we retained only these two conditions to
represent the small and large scale meta-analyses respectively. The number of studies in
actual meta-analysis varies widely. Moreover, even if the total number of studies is large in a
meta-analysis, the number of studies can still be quite small for subgroup analysis in the same
meta-analysis. Therefore, we selected the small and large conditions from Cheung and Chan
to represent the two ends of the continuum of number of studies. The numbers of correlations
(Ke) were 16 and 80 for conditions with 12 and 60 studies respectively. In other words, the
K:KE ratio was fixed to 3:4. Instead of examining specific patterns of multiple effect sizes as
in Cheung and Chan, we randomly generated the pattern for each replication. For example, if
the number of studies was 12 and the number of effect sizes was 16, we first assigned one
effect size to each of the 12 studies. For each of the remaining four effect sizes, we randomly
assigned it to one of the 12 studies. This process was repeated until all the remaining four
effect sizes were assigned. In other words, for each condition, some replications may have
eight studies with one effect size and four studies with two effect sizes, while some
replications may have 11 studies with one effect size and one study with five effect sizes.

This procedure ensures that any possible pattern could have a chance to appear in the
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simulation, thus allowing us to generalize the results to all possible patterns, instead of the
two specific ones studied by Cheung and Chan (2004).

Second, the average sample sizes examined were 100 and 300. The average sample
size in published meta-analysis varies widely, from around 100 (e.g., Dwight & Feigelson,
2000; Neshit & Adesope, 2006; ) to 300 or more (e.g., Gershoff, 2002; Thoresen, Kaplan,
Barsky, Warren, & de Chermont, 2003; Wang, Jiao, Young, Brooks, & Olson, 2007). In the
present study, we focused on meta-analyzing sample correlation. A sample size of 100 seems
to be a reasonable minimum average sample size for this kind of studies. Therefore, an
average sample size of 100 was selected as one of the conditions. To empirically examine the
samplewise and the two adjusted procedures in meta-analysis with large average sample size,
we selected an average sample size of 300 as the other condition. We extended the Cheung
and Chan (2004) study by using a larger maximum average sample size because this is
common in correlational studies to have sample sizes larger than 200. To generate the sample
size for each sample in each replication, a method similar to that used by Field (2001) was
adopted. The sample sizes across samples were drawn from a normal distribution with a
standard deviation equal to the average sample size divided by five. For example, in the
conditions that the average sample size equals 300, the sample sizes were drawn from a
normal distribution with a standard deviation of 60.

Third, two different values of average population correlation, p,, were examined,

namely .30 and .50, to represent the range of effect sizes commonly found in published
meta-analysis. We focused on cases with population effect sizes vary across studies but in the
same direction. Therefore, we did not include small average population (.10), which would
not be able to obtain a true variation of .10 (in standard deviation) without leading to an
extremely skewed distribution. Fourth, we manipulated the degree of heterogeneity. Three

values of o, were chosen, 0, .0025 and .01, which correspond to standard deviations of 0, .05,
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and .10 respectively. Therefore, both fixed effects and random effects situations were
examined (Hedges & Vevea, 1998). In the fixed effects situation, all studies have the same
population correlation. In the random effects situations, the population correlation varies
across studies. For the heterogeneous conditions (random effects situations) in which o, is

greater than zero, we defined the parameters of a beta distribution such that the mean was p, ,

the standard deviation was o), the minimum was zero, and the maximum was .95.

The fifth and sixth factors were the average degree of dependence, p,,,,and

standard deviation of the degree of dependence. We adopted the three degrees of dependence
used in Cheung and Chan (2004), but extended their study by introducing random variation to

the degree of dependence. Three levels of p,, . were chosen, .09, .3025, and .49, to represent

small, medium, and large effects as defined by Cohen (1988). Ideally, .10, .30, and .50 should
be used. However, as discussed below, the parameters used were the square roots of these
values, and for simplicity, we used values (.30, .55, and .70) to closely approximate the three
levels of effect sizes. As in Cheung and Chan, a repeated measures model was adopted to
model the dependence of the correlations. For example, the dependence might arise because
the correlation between attitude and intention for the same behavior was assessed at two
different times. To the extent that the attitude scores at the two different times were correlated,
and the error terms (variation in intention not explained by attitude) were also correlated at
the two different times, the correlation would be dependent. The parameters for the model

are p,x , the average correlation between x’s (attitude scores in the above example) within a
sample, and p,.., the average correlations between e’s (unexplained variance in intention in

the above example) within a sample (for technical details, please see Cheung and Chan,
2004). The degree of dependence among the predictor variable x and among the error e could

be translated into dependence among correlations, orri. As shown in Appendix C in Cheung
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and Chan, when o« and pee both equal .30, degree of dependence is .09. To achieve the

selected degrees of dependence, the configurations of p,y and p,.. adopted were

(.30, .30), (.55, .55), and (.70, .70). The corresponding average degrees of dependence are
approximately .09, .3025, and .49 respectively. To manipulate the sixth factor, we adopted
the beta distribution with a lower bound of zero and an upper bound of .95 to generate the o
and pee for each effect size. Two levels of standard deviations of p« and e, .05 and .10, were
used. This would result in the two degrees of variation in the degree of dependence within a
study. We did not include the condition of constant degree of dependence because it has been
studied in Cheung and Chan.

In sum, we examined six different factors in the Monte Carlo study, namely, the
number of studies (12 and 16), the average sample size (100 and 300), the average population
correlation (.30 and .50), the standard deviation of the population correlation (0, .05, and .10),
the average degree of dependence (.09, 3025, and .49), and the degree of variation in the
degree of dependence (standard deviation of pu/pee: 05 and .10). The total number of
conditions was 72. The number of replications for each condition was 2,000. The theoretical
distribution of the sample proportion, given a population proportion of .50 and 2,000 cases, is
about .011. Therefore, 2,000 replications would lead to an accurate estimation of the
statistical power.

Results
Estimating the Population Correlation ( p,)

The mean estimated population correlation (or average population correlation, when

between study heterogeneity was present) was close to the true value in all situations. For

conditions with p, =.30, the average estimated population correlation ranged from .297
to .301. For conditions with p, =.50, the average estimated population correlation ranged

from .496 to .500. When rounded to the second decimal place, the average estimated
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population correlation was equal to the true value in all conditions. Therefore, the estimation
of the average population correlation was practically unbiased in all situations and for all
three methods.

Coverage Probabilities of the 95% and 90% Confidence Intervals

The empirical coverage probabilities of the 95% and 90% confidence intervals were
examined. Due to similar results across some conditions, only the results for different degrees
of heterogeneity (o,2), different degrees of variation in degree of dependence (different

standard deviations of pxw/pee), and different degree of dependence ( p, - ) were examined,

with other conditions within the same combination of these three factors were collapsed
together. The coverage probabilities are presented in Table 2. In general, the coverage
probabilities were close to the nominated values, although slight over—coverage was observed
when the population correlations were homogeneous (o, = 0) and when the samplewise
procedure was used.

Estimating the Average Degree of Dependence ( p,,, )

The average mean squared errors of the estimated average degree of dependence are
presented in Table 1. In general, the accuracy of the two adjusted procedures was similar
across conditions. The results were also similar for the two average sample sizes (100 and
300) and the two average population correlations (.30 and .50). The average estimates were
closer to the population average degree of dependence when the number of studies was 60
than when it was 12. Moreover, the higher the average degree of dependence, the smaller the
error was. In sum, the error was largest when the number of studies was 12 and the
population average degree of dependence was small (.09).

Estimating the Degree of Heterogeneity (o,?)
The means of the estimated degree of heterogeneity for o, equal to .0000 and .0100

were reported in Figures 1 and 2 respectively. Examining these two conditions with the
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intermediate condition (o,? equal to .0025) did not suggest any U-shaped relationship, and so
results for o2 equal to .0025. Similarly, examining the three conditions of average degrees of

dependence (p,,, =.49,.30, and .09) did not suggest any U-shaped relationship. Therefore,
only results for p,,, equal to .49 and .09 were reported in each figure to ensure the

readability of the figures, As shown in the figures, the samplewise procedure was the most
negatively biased (i.e., underestimating the true variations) in most conditions, even when the
average sample size was 300. The adjusted-weighted procedure, on the other hand, was the
least biased in most conditions. The adjusted-individual procedure, though more biased than
the adjusted-weighted procedure, still performed better than the samplewise procedure in
most conditions.

In general, the larger the average sample size, the less biased the estimation for all
three procedures. The benefit of large sample size was especially apparent for the samplewise
procedure. On the other hand, as shown in Figure 2, increase in the number of studies also
seemed to decrease the bias when true variations existed (o> > 0). In most conditions, the

bias when the average population correlation ( p, ) was medium (.50) was also smaller than

when the average population correlation was small (.30).

When comparing conditions with different average degrees of dependence (p,,, ), it

was found that the bias of the samplewise estimate decreased when the average degree of
dependence increased. That is, in general, the higher the degree of dependence (the thicker
the line), the smaller the bias (the higher the line). The two adjusted procedures seemed to be
similarly affected by the average degree of dependence, but to a lesser extent.

When considering the variation in the degree of dependence (standard deviation of
ol pee: 05 versus .10), the biases of both the samplewise procedure and the

adjusted-individual procedure seemed to be smaller when the variation was larger. The
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variation in the degree of dependence, on the other hand, had no consistent effect on the
adjusted-weighted procedure.
Empirical Power to Detect True Variations

Due to space limit, only the results for K=12 were reported, because it is unlikely
that the number of studies in subgroup analysis is as large as 60. In most conditions, the
empirical power of the samplewise procedure was smaller than the two adjusted procedures,
especially when the average sample size was 100. Averaged across conditions, empirical
power of the samplewise procedure was 5.2% less than that of the adjusted-individual
procedure, and 6.5% less than that of the adjusted-weighted procedure. The two adjusted
procedures, on the other hand, had similar empirical power in most situations (average
difference across situation was 1.4%). When the true variation was small (o,=.05), the
power disadvantage of the samplewise procedure was as large as .10 even when the average
sample was 300, that is, 10% less likely to detect the true variation when compared to the two
adjusted procedures. The three procedures had similar empirical power when the average
sample size was 300 and the true variation was large (o= .10), ranged from 95% to nearly
100%. Last, the degree of dependence had negligible influence on the empirical power of
each procedure.

Discussion

The simulation results provide further support for the two adjusted procedures. Even
when the degree of dependence is heterogeneous both across and within studies, our results
suggest that the adjusted-weighted and adjusted-individual procedures still yielded more
accurate estimates of the degree of heterogeneity than the commonly used samplewise
procedure. The two adjusted procedures were also statistically more powerful to detect true
variation, especially when the number of studies was small. The present study also suggests

that the advantage of the adjusted procedures over the samplewise procedures was not
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specific to the two patterns of distribution of effect sizes across studies that were examined in
Cheung and Chan (2004). In the present study, the patterns were randomly generated and so
the results found could be in principle generalized to all possible patterns. We also examined
the conditions with large average sample size (300), and found that the samplewise procedure
was still the most biased procedure even when the average sample size was large. It should be
noted that the large sample size did help to decrease its bias. In sum, our results suggest that
the two adjusted procedures should be used instead of the samplewise procedure when some
studies contribute more than one effect size and there is insufficient information to apply the
analytic procedures available.

As mentioned earlier, the samplewise procedure essentially assumes that the several
effect sizes given by the same study are highly dependent. Therefore, the bias of the
samplewise procedure should decrease as the average degree of dependence increase. This
relationship was found in Cheung and Chan (2004), and is replicated in the present study.
Moreover, when comparing the two adjusted procedures, our results suggest that even when
the degree of dependence varies across studies, one should use the weighted average
estimated degree of dependence to adjust the sample size of all within study average
correlations (the adjusted-weighted procedure), instead of, as would be suggested by intuition,
adjusting each within study average using the estimated degree of dependence of that
particular study (the adjusted-individual procedure). We believe that this finding may be
related to the sampling error associated with the estimate of dependence for each study. The
weighted average estimate of dependence should have much less sampling error than
individual estimates. To the extent that the accuracy of the estimate of degree of
heterogeneity depends on the expectation of the sampling error instead of the expectation of
the estimated sampling error of each individual study, the weighted average instead of the

individual estimates would produce a more accurate estimate of the degree of heterogeneity.
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Note that this is the same rationale that Schmidt, Law, Hunter, and Rothstein (1993) used to
support their use of average correlation, instead of individual correlations, to compute the
sampling error of the weighted average correlation in meta-analysis.

Although we focused on the estimation and the significance test of the degree of
heterogeneity, two aspects of the results also warranted discussion, the estimation of the
average population correlation and the coverage probability of the confidence intervals. As in
Cheung and Chan (2004), we found that the three procedures were accurate in estimating the
average population correlation even when the degree of dependence varied within study.
Moreover, the coverage probabilities of the 95% and 90% confidence intervals, though not
exact, were close to the nominated level for all three procedures in most of the conditions
examined. This suggests that if the main goal is to form point and interval estimates of the
average population correlations, the three procedures would yield similar results.

The present study extends previous research by studying the more realistic situation
of heterogeneous degree of dependence. However, four limitations should be noted. First,
both the present study and the study by Cheung and Chan (2004) did not examine the
presence of measurement error. To the best of our knowledge, the derivation of Hunter and
Schmidt approach assumes independent effect sizes and may not work when the effect sizes
are dependent, although there are some rules of thumb that are similar to the samplewise
procedure. To expand the scope of application of both the adjusted procedures proposed and
the Hunter and Schmidt approach, we need to incorporate the adjustment for dependent effect
sizes into their approach with correction for artifacts. Second, both the present study and the
study by Cheung and Chan (2004) were limited to the case that the within study population
correlation is fixed. We believe this is a reasonable assumption, because differences in
moderator variables, if any, are likely to be larger between studies than within studies.

However, the scope of application of the adjusted procedures would be broader if this
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assumption is relaxed. Future studies are necessary to revise the adjusted procedures to allow
within study variation in the population correlation. Third, in the present study, we only
investigated situations with positive average population correlations. It is possible that in
some areas, a moderator may actually reverse the direction of an effect, leading to a small or
even zero average population correlations. In this situation, the Type | error rates of the
significance test of the zero average population correlations should be examined for the
adjusted procedures. Fourth, like Cheung and Chan (2004), we adopted two assumptions that
may not hold in some meta-analytic studies. We used a repeated measures model to generate
within-study dependence. This is a plausible mechanism when the dependence is due to
multiple assessments of the same or a similar pair of variables (e.g., attitude-intention
correlation). However, there may be other forms of dependence in actual studies. Moreover,
we assumed equal average px and pee. Although we have relaxed the implausible assumption
of equal px and pee across studies made by Cheung and Chan (2004), it is reasonable to
expect unequal average pxx and pee in some actual studies. For example, for the case of
repeated measures, the dependence among attitudes may be stronger than the dependence
among measurement errors, leading to higher average p« than average pee. Although the
derivation of the two proposed procedures does not depend on the mechanism leading to
dependence, future studies should empirically examine the performance of the proposed

procedure when these two assumptions are relaxed.
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Table 1. The Average Mean Squared Error in Estimating the Average Degree of Dependence Across Conditions
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Average Population Correlation ( p,) =.30 Average Population Correlation ( p,) = .50

Estimation Individual Weighted Individual Weighted

Perr .09 .30 49 .09 .30 49 .09 .30 49 .09 30 .49
o’ SD(o,) N K/Ke

.0000 .05 100 12/16 135 107 .082 .136 .108 .083 .138 .108 .084 .139 .109 .084
60/80 040 .040 .028 .041 .040 .029 .039 .041 .029 .040 .042 .030
300 12/16 140 .108 .084 .143 .109 .085 .141 .109 .084 .144 109 .084
60/80 039 .037 .027 .040 .038 .027 .040 .038 .027 .041 .039 .028
10 100 12/16 140 100 .087 .142 .100 .087 .141 .102 .086 .144 .102 .087
60/80 040 .039 .031 .041 .040 .032 .040 .040 .033 .041 .041 .033
300 12/16 138 .105 .086 .140 .105 .087 .138 .104 .087 .139 .104 .087
60/80 041 .039 .029 .042 .040 .030 .040 .040 .029 .041 .041 .029
.0025 .05 100 12/16 139 105 .082 .141 106 .083 .137 .110 .087 .139 .110 .087
60/80 039 040 .029 .040 .040 .030 .040 .040 .032 .042 .041 .033
300 12/16 137 107 .085 .139 .108 .085 .137 .105 .083 .138 .105 .085
60/80 041 .040 .027 .042 .041 .029 .039 .040 .027 .040 .041 .028
10 100 12/16 143 104 .087 .145 106 .087 .137 .105 .085 .138 .106 .085
60/80 043 .041 .028 .044 .041 .029 .038 .041 .031 .039 .042 .032
300 12/16 137 104 .085 .138 .105 .086 .140 .107 .090 .142 .108 .090
60/80 040 .040 .028 .042 .040 .029 .040 .040 .028 .041 .041 .029
.0100 .05 100 12/16 145 107 .087 .148 .107 .088 .156 .113 .086 .159 .114 .086
60/80 039 .040 .030 .041 .040 .031 .042 .042 .031 .043 .042 .031
300 12/16 147 105 .085 .149 106 .087 .148 .110 .086 .150 .111 .086
60/80 043 039 .027 .044 .040 .028 .042 .039 .028 .043 .040 .029
10 100 12/16 144 104 .087 .146 .105 .088 .151 .108 .092 .154 .109 .093
60/80 041 040 .029 .042 .041 .030 .038 .040 .030 .039 .041 .031
300 12/16 145 104 .087 .149 .106 .088 .151 .108 .086 .153 .109 .087
60/80 042 039 .028 .043 .040 .029 .044 .040 .032 .045 .041 .033

Note: N : Average sample sizes; K: Number of studies; Ke: Number of correlations; Individual: Adjusted-individual procedure; Weighted:
Adjusted-weighted procedure; o, Variation of population correlations; p, ., : Average degree of dependence.
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Table 2. The Coverage Probabilities of the 95% and 90% Confidence Intervals Across Conditions

Samplewise Individual Weighted
Perr .09 30 49 09 30 49 09 30 .49
O-pz SD(/OXX)

0000 .05 97 97 97 9 9 96 96 9 .9
- 10 97 9 96 96 96 96 96 .96 .96
o, 0025 05 o4 94 94 o4 94 94 94 94 94

C?Ru;val 10 95 94 94 94 94 94 94 94 94

0100 05 o4 93 94 94 93 93 94 93 .03

10 94 94 94 93 94 94 93 94 94

0000 .05 93 93 93 92 o1 91 92 92 9

- 10 93 93 92 92 91 91 92 92 o1
o 0025 05 90 89 89 89 88 89 89 .88 .89
il 10 89 89 90 89 89 89 89 89 .89
0100 05 89 88 88 88 88 88 88 .88 .88

10 88 89 89 8 89 89 88 .89 .89

Note: Samplewise: Samplewise procedure; Individual: Adjusted-individual procedure; Weighted: Adjusted-weighted procedure; o,?: Variation of
population correlations; p,,, : Average degree of dependence.
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Figure Captions
Figure 1. The Average Estimated Degree of Heterogeneity (o,? = .0000).

Figure 2. The Average Estimated Degree of Heterogeneity (o, = .0100).
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Figure 1. The Average Estimated Degree of Heterogeneity (o,? = .0000)
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Figure 2. The Average Estimated Degree of Heterogeneity (o> = .0100)
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